Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochimie ; 165: 170-178, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31376420

RESUMO

The interactions of 6-8 ring hairpin polyamides (PAs) with the minor groove of DNA have been investigated extensively. More recent studies of large antiviral PAs (14-20 rings) active against small DNA tumor viruses lead to questions regarding the extent to which the DNA binding behaviors of the well studied, smaller PAs can be reliably extrapolated to the larger ones. Described here is the first reported study of hairpin PA-DNA binding thermodynamics as a function of PA size (6-20 rings). All PAs exhibit binding affinity in the low nM to upper pM range, which indicates that affinity is not a discriminator of antiviral activity. Unlike the smaller PAs, a 20-ring PA does not appreciably dissociate from DNA in competition experiments, which indicates very long residence time that is consistent with antiviral activity. While the DNA binding thermodynamics for the smaller antivirally inactive 6- and 8-ring PAs is clearly enthalpically driven, the larger antiviral PAs (14- and 20-rings) exhibit strongly entropically-driven DNA binding. These distinct energetic signatures indicate that different types of interactions drive these associations. In DNA binding site stoichiometry experiments conducted at both nM and µM concentrations, all PAs except the 6-ring PA bind an isolated site with site stoichiometry of at least two PAs per recognition sequence. Electrostatic contributions to DNA binding affinity are small for all PAs and not correlated with PA size but weakly correlated with the number of imidazole residues. Altogether, these results indicate that DNA binding behaviors of smaller hairpin PAs do not necessarily reflect those of larger PAs. These are vital considerations in the development of hairpin PAs for biological use.


Assuntos
Antivirais/química , DNA de Neoplasias/química , DNA Viral/química , Imidazóis/química , Sítios de Ligação , Sequências Repetidas Invertidas , Conformação de Ácido Nucleico , Termodinâmica
2.
Biochimie ; 157: 149-157, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30481539

RESUMO

PA1 (dIm-PyPyßPyPyPy-γ-PyPyßPyPyPyPyß-Ta) is a large (14-ring) hairpin polyamide that was designed to recognize the DNA sequence 5'-W2GW7-3', where W is either A or T. As is common among the smaller 6-8-ring hairpin polyamides (PAs), it binds its target recognition sequence with low nM affinity. However, in addition to its large size, it is distinct from these more extensively characterized PAs in its high tolerance for mismatches and antiviral properties. In ongoing attempts to understand the basis for these distinctions, we conducted thermodynamics studies of PA1-DNA interactions. The temperature dependence of binding affinity was measured using TAMRA-labeled hairpin DNAs containing a single target sequence. PA1 binding to either an ATAT/TATA or an AAAA/TTTT pattern is consistently entropically driven. This is in contrast to the A/T pattern-dependent driving forces for DNA binding by netropsin, distamycin, and smaller hairpin polyamides. Analysis of the salt dependence of PA1-DNA binding reveals that within experimental error, there is no dependence on ionic strength, indicating that the polyelectrolyte effect does not contribute to PA1-DNA binding energetics. This is similar to that observed for smaller PAs. PA1-DNA recognition sequence binding stoichiometries were determined at both nM (fluorescence) and µM (circular dichroism) concentrations. With all sequences and under both conditions, multiple PA1 molecules bind the small DNA hairpin that contains only a single recognition sequence. Implications for these observations are discussed.


Assuntos
Antivirais/química , DNA/química , Distamicinas/química , Netropsina/química , Nylons/química , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...